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Fibroblast activation protein-α (FAP- α) is a membrane-associated serine protease of the S9b family of 
post-proline cleaving enzymes. It is usually expressed in reactive stromal fibroblasts in many types of 
diseases connected with extensive pathological alterations of the connective tissue like arthritis, fibro-
ses, carcinomas and sarcomas. That is why the enzyme is considered a valuable marker for those enti-
ties. Design and development of specific FAP-α substrates are rather challenging due to the enzyme’s 
structural similarity with the other proline-specific enzymes. In this paper we present the design of three 
novel substrates for the determination of FAP-α activity as well as the assessment of their efficacy and 
specificity. According to the obtained results, one of the newly developed substrates has a potential to be 
used as a highly specific substrate for FAP-α. 
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Introduction
Fibroblast activation protein-α (FAP-α; EC 3.4.21.B28) is a membrane-bound post-
proline cleaving serine protease. It represents a 97 kDa glycoprotein existing as 170 
kDa homodimer in its native form [15]. The enzyme hydrolyzes polypeptide substrates 
possessing Pro in P1 position. It can act both as exo- and endopeptidase but is more ef-
ficient as an endopeptidase [14]. Some of the well-known enzyme`s natural substrates 
are collagen type I, neuropeptide Y, B-type natriuretic peptide, substance P and peptide 
YY [9]. FAP-α is involved in normal processes like tissue remodeling during the embry-
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onic development, wound healing, etc. However, normal adult human and mammalian 
tissues do not express FAP-α [18]. Otherwise, the enzyme is highly induced in many 
diseases such as rheumatoid arthritis and osteoarthritis, liver and pulmonary fibrosis 
and in cancer [reviewed in 11]. It is expressed mostly by reactive stromal fibroblasts but 
has also been found in certain types of tumor cells [5, 11]. Many studies have shown 
that FAP-α participates in the mechanisms of tumor growth, angiogenesis and inhibition 
of the antitumor immune response [12, 17]. Studies on the enzyme activity in norm and 
pathology need the application of highly selective substrates [6]. However, the design 
of FAP-α specific substrates is very difficult due to its close structural similarity with 
the other proline-specific enzymes [reviewed in 5]. 

In the present paper we describe the design and development of three novel sub-
strates intended for the biochemical assays of FAP-α activity in tissue homogenates 
and/or cell lysates. Additionally, we present the assessment of these substrates’ efficacy 
and selectivity.

Materials and Methods

Molecular modeling. Using the crystal structure of human FAP-α (Protein Data Bank 
ID: 1Z68), obtained by Aertgeerts et al. [1], we modeled the structure of the enzyme-
substrate complex with isonicotinoyl-D-Ala-Pro-4-nitroanilide by Dreiding forcefield 
method [13].

FAP-α substrates. We synthesized, purified (recrystallization, high performance 
liquid chromatography) and analyzed (nuclear magnetic resonance, mass spectromet-
ry) the following substrates: β-Ala-D-Ala-Pro-4-nitroanilide (AAP), β-Ala-Nle-Pro-
4-nitroanilide (ANP) and isonicotinoyl-D-Ala-Pro-4-nitroanilide (IAP). The synthetic 
methods, substrates purification and spectral analyses will soon be published elsewhere.

Cell culturing. Three permanent cell lines were used – MCF-10A (normal im-
mortalized human epithelial cells from mammary gland), MCF-7 (human tumor cells 
obtained from mammary gland carcinoma of low invasiveness) and MDA-MB-231 
(human tumor cells from mammary gland carcinoma of high invasiveness). The can-
cer cells were cultured in 75 cm2 tissue culture flasks in Dulbecco’s Modified Eagle’s 
Medium – high glucose 4.5‰ (DMEM), supplemented with 10% fetal calf serum and 
antibiotics in usual concentrations. Normal cells were cultivated in the same conditions 
but with the addition of 20 mg/l human epidermal growth factor (EGF), 0.5 mg/l hydro-
cortisone, 0.1 mg/l cholera toxin and 10 mg/l insulin. Cell cultures were maintained at 
37.5 °C in a humidified atmosphere and 5% CO2 until 95% confluence was achieved.

Biochemical assays. For the estimation of FAP-α activity towards different sub-
strates, aliquots of human recombinant FAP-α (Enzo Life Sciences, Inc.) were incu-
bated with 0.1 mM of the respective substrate in 0.1 М phosphate buffer (рН 7.4), 
containing 0.1 М NaCl and 1 mM EDTA at 37 °C. Enzyme assays were carried out in 
96-well plates. Absorption of the samples at 405 nm was measured every 4 minutes on 
multifunctional spectrofluorimeter Varioscan. The results were statistically estimated 
by regression analysis and curves showing the time-dependence of the adsorption at 
405 nm were built by means of EnzFitter V2. In the cases of non-linear correlation, the 
enzyme activity was determined from the initial rate of the reaction.

The cells were harvested by a rubber policeman and homogenized using homo-
genizer MSE (England) in 5 ml 0.1 М phosphate buffer (рН 7.4) with 0.1 М NaCl and 
1 mM EDTA. After a spectrophotometric measurement of the protein amount [2], the 
samples were incubated with the above FAP-α substrates (0.1 mM) in the same buffer 
at 37 ºС. The enzyme reactions in the samples were followed and analysed as above.
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Results and Discussion

In cancer, FAP-α is usually expressed 
by cancer-associated fibroblasts 
where it takes part in the hydrolyzes 
of collagen type I thus opening free 
spaces for tumor invasion and blood 
vessels formation, as well as in the 
inhibition of the immune system’s an-
titumor activity [reviewed in 4, 6 and 
11]. However, several studies have 
shown that in some types of tumors 
FAP-α can be a tumor suppressor, e.g. 
in melanomas and in non-small cells 
lung carcinomas [reviewed in 4 and 
18]. Thus, the marker role of FAP-α 
needs to be clarified separately in the 
oncological diseases of different ori-
gin. For this purpose, highly specific 
substrates are required to determine 
the activity of the enzyme. Unfortu-
nately, the design of selective sub-
strates for FAP-α is a difficult task 
due to its close structural similarity 
with other proline-specific proteases. 
For example, FAP-α and dipeptidyl peptidase IV (DPPIV) have 50% identity in the 
entire amino acids sequence and 70% in the catalytic domain [3] (Fig. 1).

The careful view of the entire active centers of the two enzymes shows that in 
FAP-α it is covered up mostly by non-polar amino acids, whereas in DPPIV it con-
tains extra polar amino acids (not shown here). This fact explains why FAP-α is more 
efficient as an endopeptidase while DPPIV represents a typical exopeptidase. That is 
why, NH2-Gly-Pro-based synthetic substrates commonly used to determine DPPIV and 
DPPIV-like enzymes’ activities (DPP 8 and 9) are useless for the analyses of FAP-α 
activity. Further on, a commercial substrate for FAP-α is available – Z-Gly-Pro-7-ami-
do-4-methylcoumarine. However, it is known to be cleaved also by other prolyl oligo-
peptidases (POPs).

Recently, several selective inhibitors (1, 2) and a selective substrate (3) for FAP-α 
were reported [7, 10, and 16] (Fig. 2).

All the above selective for FAP-α compounds contain isonicotinic or isoquinolinic 
acid residues connected with D-Ala.

Fig. 1. Structural similarity between active centers of 
FAP-α (bolt) and DPPIV (pale). In the right site of the 
scheme, the catalytic triads of both enzymes are seen 
to coincide almost perfectly - Ser624, Asp702, His734 
(FAP-α) and Ser630, Asp708, His740 (DPPIV). Tyr124 
of FAP-α is very important for the substrates orientation. 
In DPPIV molecule, His126 is present in this position

Fig. 2. FAP-α selective inhibitors N-(pyridine-4-carbonyl)-D-Ala-boroPro 
(1), N-(quinoline-4-carbonyl)-D-Ala-2-cyanopyrrolidine (2), and the selec-
tive substrate N-(quinoline-4-carbonyl)-D-Ala-Pro-4-methyl-7-coumaryl 
amide (3)

1 2 3
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Based on the above studies, we designed and synthesized three novel chromogenic 
FAP-α substrates intended for biochemical assays of the enzyme activity (Fig. 3). Those 
substrates are as follows: isonicotinoyl-D-Ala-Pro-4-nitroanilide (IAP), which posses-
ses the same N-(pyridine-4-carbonyl)-D-Ala - sequence as the compounds specific for 
FAP-α and listed above; β-Ala-D-Ala-Pro-4-nitroanilide (AAP) with a β-Ala- flexible 
moiety resembling the structure of isonicotinic acid and β-Ala-Nle-Pro-4-nitroanilide 
(ANP), possessing Nle at P2 position which non-polar side-chain is expected to fit in the 
non-polar active center of FAP-α.

Molecular modeling showed that the cyclic nitrogen of the isonicotinic acid forms 
a hydrogen bond with the OH-group of Tyr124, thus stabilizing the enzyme-substrate 
complex and properly orientating the C=O-group of scissile bond towards the catalytic 
serine (Fig. 4).

The principle of biochemical analyses of 
FAP-α activity is as follows: The enzyme cleaves 
the amide bond at the proline carboxyl group to 
liberate 4-nitroaniline, which is of yellow color 
and has maximum absorption at 405 nm. The en-
zyme activity can be estimated by the quantity 
of 4-nitroaniline liberated per minute per 1 mg 
protein at 37 ºC.

First, we studied the efficacy of every sub-
strate to be hydrolyzed by the human recom-
binant FAP-α at the optimal conditions for the 
enzyme action (pH 7.4, 37 ºC in the presence of 
NaCl and EDTA). The results are given in Fig.5.

The results showed that FAP-α hydrolyzes 
all the three substrates but ANP is the most ef-
ficient, whereas IAP has the lowest efficacy. 
These outcomes are logical since Nle has a long 
non-polar side-chain which fits precisely in the 
enzyme active center. On the other hand, low ef-
ficacy of the substrates can be compensated by a 

Fig. 3. Chromogenic substrates for FAP-α designed and synthesized by us: β-Ala-D-Ala-Pro-4-nitroanilide 
(AAP), isonicotinoyl-D-Ala-Pro-4-nitroanilide (IAP), and β-Ala-Nle-Pro-4-nitroanilide (ANP)

AAP IAP

ANP

Fig. 4. Binding of the substrate isonico-
tinoyl-D-Ala-Pro-4-nitroanilide in the ac-
tive center of FAP-α. The nitrogen atom of 
the cycle of isonicotinic acid forms a hyd-
rogen bond with the OH-group of Tyr124
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prolonged incubation, whereas their specificity may be crucial for the precise determi-
nation of the enzyme activity especially in heterogeneous mixtures like tissue homoge-
nates or cell lysates.

Further, we tested the selectivity of our substrates in cell lysates using three cell 
lines:  MCF-10A (normal immortalized human epithelial cells from mammary gland), 
MCF-7 (human tumor cells obtained from mammary gland carcinoma of low invasive-
ness), and MDA-MB-231 (human tumor cells from mammary gland carcinoma of high 
invasiveness). While MCF-10A has a low FAP-α activity, MCF-7 and MDA-MB-231 
are usually used as negative controls since they are known to lack any enzyme activity 
[see e.g. 8]. According to the results (Fig. 6), the most efficient substrate – ANP has the 
lowest specificity towards FAP-α. Obviously, it is cleaved by a number of POPs and 
shows similar results in the three cell lines.

Fig. 5. Estimation of the efficacy of the newly synthesized FAP-α 
substrates to be cleaved by the enzyme

Fig. 6. Estimation of the specificity of the newly developed FAP-α 
substrates
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The AAP substrate is more specific for it shows no FAP-α activity in MDA-
MB-231. However, it demonstrates a cross-reactivity with some POP(s) in MCF-7 cell 
line. Finally, IAP can be considered as a highly specific substrate for the enzyme in this 
experiment.

Conclusion

We designed and synthesized three novel substrates for the determination of FAP-α ac-
tivity – AAP, IAP and ANP. The last substrate is quickly and efficiently hydrolyzed by 
the enzyme and can be a useful tool to study the activity of isolated and purified FAP-α. 
Additionally, IAP although having a low efficacy to be cleaved by FAP-α, can be con-
sidered a highly selective substrate and can be valuable for the specific determination 
of the enzyme activity in heterogeneous mixtures such as tissue homogenates, plasma 
samples or cell lysates.
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